林軒田機器學習基石筆記 - 第十三講

  • 本文為一系列課程之筆記,建議從" 機器學習基石筆記-1 "開始閱讀

  • 本文討論內容請參考: 機器學習基石第十三講 : Hazard of Overfitting

  • 本篇所有圖片部分由筆者製作,其它均為機器學習基石課程內容講義

Overfitting

如果我們手中有 N 個資料點,可以在圖形上面標示出來,高中數學告訴我們,必然存在唯一一個 N-1 次曲線 \(g\) 可以通過這 N個點,而此時 \(E_{in}(g)=0\)

在現實情況下,這樣 \(E_{in}\) 極低的情況往往在新的、未見過的資料的預測能力會非常差 ,也就是 \(E_{out}\) 會非常高,這樣的「狀態」,我們稱之為 'Bad Generalization'

而我們常聽到的 'Overfitting' 或是 'Underfitting' 其實是一個「過程」

'Overfitting' 就是從 \(d_{vc}^*\) 往 'Bad Generalization'移動,且 \(E_{in}\)遞減, \(E_{out}\)遞增的過程

'Underfitting' 就是從 \(d_{vc}^*\) 往 'Bad Generalization'移動,且 \(E_{in}\)遞增, \(E_{out}\)遞增的過程

在機器學習的過程中,導致 Overfitting 的成因大致如下 : 1. \(d_{vc}\)太高 2. 太多的 \(Noise\) 3. 受限的 data size \(N\)

我們可以用下面的兩張圖來看看 \(d_{vc}\)\(Noise\)\(N\) 的關係

這圖看起來有點複雜,簡單來說結論就是 :「不管我的 target function 長什麼樣子,也不管有沒有 noise,比較簡單的 model 都會有比較好的預測能力」 ,雖然不管什麼狀況 \(E_{in}(g_2)>E_{in}(g_{10})\),但是 \(E_{out}(g_2)\ll\ll E_{out}(g_{10})\)

究竟我們能不能從 \(Noise\) 的角度來解釋左右兩遍為什麼始終都是2次模型做得比較好呢 ?

Stochastic Noise & Deterministic Noise

我們可以將上圖以數學式來表達 :

\(y=f(x)+\epsilon\) , where \(\epsilon\sim Gaussian(\sum\limits_{q=0}^{Q_f}\alpha_qx^q , \sigma^2)\) ( \(\epsilon\) 是從高斯分布隨機選出 with level \(\sigma^2\) ; \(Q_f\)\(f\) 的 complexity level ) 並且我們可以定義出 overfit measure = \(E_{out}(g_{10})-E_{out}(g_2)\)

如果固定 \(Q_f\)\(\sigma^2\) 不同,則為左圖情形,產生的是我們熟悉的 noise ,稱為 Stochastic Noise ; 若固定 \(\sigma^2\)\(Q_f\) 不同,則為右圖情形,我們原本以為不會產生 Noise ,但其實 target function \(f\) 的複雜度本身也會製造出 noise,這種我們稱之為 Deterministic Noise

如果今天 \(f\) 的複雜度很高,即使資料本身並不存在 Stochastic Noise,在有限的資料數 N 中我們即使拿複雜度相同的 model 來fit,也會失準,因為有限資料數還是無法完全代表所有資料,這中間就會產生 Deterministic Noise , 導致我們無法找出一個絕對準確的模型。

下面的圖其實就是 \((Q_f,\sigma^2,N)\) 與 Overfitting 的關係 :

( 左邊是 Stochastic Noise 在不同資料量下對 overfitting 的影響狀況,右圖則代表著 Deterministic Noise 在不同資料量下對 overfitting 的影響狀況 )

從上圖我們可以總結 Overfitting 產生的情形通常來自於 : (1) 資料量 N 太小 (2) Stochastic Noise 太大 (3) Deterministic Noise 太大 (4) Model Complexity 太高

如何避免 Overfitting ?

  1. Start from simple model ( 不要一開始就使用複雜的模型 )
  2. Data cleaning / Data pruning ( 對可能的 Noise 先進行處理 )
  3. Data Hinting ( 以現有資料盡可能地擴展出更多資料 virtual examples )
  4. Regularization (正則化 :對權重加以限制,不要無條件求最優解 )
  5. Validation ( 驗證 : 將現有資料分出一部分作為驗證集,來避免掉overfitting 的狀況 )